Updated tables of parameters of (T, M, S)-nets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Updated Tables of Parameters of (T, M, S)-Nets

We present an updated survey of the known constructions and bounds for (t, m, s)nets as well as tables of upper and lower bounds on their parameters for various bases. c © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 381–393, 1999

متن کامل

Linear programming bounds for (T,M, S)-nets

of volume bT−M contains exactly b points of the net. (Note that V ol(E) = b− ∑ di .) These deterministic low-discrepancy point sets have proven powerful in the estimate of high-dimensional integrals. The goal is to make the quality parameter T as close to zero as possible. Some researchers work on constructions of such nets and ideas from coding theory have led to very powerful examples [7]. Bu...

متن کامل

An Asymptotic Gilbert - Varshamov Bound for ( T , M , S ) - Nets

(t,m, s)-nets are point sets in Euclidean s-space satisfying certain uniformity conditions, for use in numerical integration. They can be equivalently described in terms of ordered orthogonal arrays, a class of finite geometrical structures generalizing orthogonal arrays. This establishes a link between quasi-Monte Carlo methods and coding theory. In the present paper we prove an asymptotic Gil...

متن کامل

A Dual Plotkin Bound for (T, M, S) -Nets

The effectiveness of Quasi-Monte Carlo methods for numerical integration has led to the study of (T,M, S)-nets, which are uniformly distributed point sets in the Euclidean unit cube. A recent result, proved independently by Schmid/Mullen and Lawrence, establishes an equivalence between (T,M, S)-nets and ordered orthogonal arrays. In a paper of Martin and Stinson, a linear programming technique ...

متن کامل

New star discrepancy bounds for ( t , m , s ) - nets and ( t , s ) - sequences

In this paper, we derive new general upper bounds on the star discrepancy of (t,m, s)-nets and (t, s)-sequences. These kinds of point sets are among the most widely used in quasi-Monte Carlo methods for numerical integration. By our new results, we improve on previous discrepancy bounds and prove a conjecture stated by the second author in an earlier paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Designs

سال: 1999

ISSN: 1063-8539,1520-6610

DOI: 10.1002/(sici)1520-6610(1999)7:5<381::aid-jcd7>3.0.co;2-s